Classification of Skin Diseases using Digital Image Processing with MobileNetV2 Architecture

Authors

  • Nahla Tarisafitri Universitas Nahdlatul Ulama Indonesia
  • Andi Aljabar Universitas Nahdlatul Ulama Indonesia

DOI:

https://doi.org/10.47776/nuai.v1i1.1594

Keywords:

CNN, MobileNetV2, Skin Diseases, Deep Learning, Digital Image Processing

Abstract

Skin diseases are prevalent in tropical countries like Indonesia, where geographical and climatic conditions facilitate their spread. This research aims to classify skin diseases using digital image processing with the MobileNetV2 architecture. The DermNet dataset is used to develop and test the model. Various image preprocessing techniques, including resizing, augmentation, and normalization, were applied to the dataset, which consists of 300 images categorized into dermatitis, psoriasis, and scabies. The model achieved a training accuracy of 90% and a validation accuracy of 70%, with notable success in classifying psoriasis. The findings suggest that MobileNetV2, when combined with CNN, is a promising tool for diagnosing skin diseases early and efficiently.

References

[1] M. A. Hanin, R. Patmasari, and R. Y. Nur, “Skin Disease Classification System Using Convolutional Neural Network (CNN),” e-Proceeding Eng., vol. 8, no. 1, pp. 273–281, 2021.

[2] L. Triyono, A. Nur Aziz Thohari, H. Idhawati, and A. Yobioktabera, “Klasifikasi Penyakit Kulit Menggunakan Metode Convolutanional Neural Network,” in Sentrikom, 2022, vol. 4, no. 1, pp. 37–44.

[3] P. Jonsson et al., “The Translational Dermatology Initiative – aiming at a new disease classification of inflammatory skin diseases,” JID Innov., p. 100381, May 2025, doi: 10.1016/j.xjidi.2025.100381.

[4] Z. Li, K. C. Koban, T. L. Schenck, R. E. Giunta, Q. Li, and Y. Sun, “Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends,” J. Clin. Med., vol. 11, no. 22, p. 6826, Nov. 2022, doi: 10.3390/jcm11226826.

[5] K. G. Kim, “Book Review: Deep Learning,” Healthc. Inform. Res., vol. 22, no. 4, p. 351, 2016, doi: 10.4258/hir.2016.22.4.351.

[6] M. S. A. M. Al-Gaashani, W. Xu, and E. Y. Obsie, “MobileNetV2-based deep learning architecture with progressive transfer learning for accurate monkeypox detection,” Appl. Soft Comput., vol. 169, p. 112553, Jan. 2025, doi: 10.1016/j.asoc.2024.112553.

[7] A. Ali, H. Shahbaz, and R. Damaševičius, “xCViT: Improved Vision Transformer Network with Fusion of CNN and Xception for Skin Disease Recognition with Explainable AI,” Comput. Mater. Contin., vol. 83, no. 1, pp. 1367–1398, 2025, doi: 10.32604/cmc.2025.059301.

[8] C. Lei, Y. Jiang, K. Xu, S. Liu, H. Cao, and C. Wang, “Convolutional Neural Network Models for Visual Classification of Pressure Ulcer Stages: Cross-Sectional Study,” JMIR Med. Informatics, vol. 13, pp. e62774–e62774, Mar. 2025, doi: 10.2196/62774.

[9] A. Tirtana and R. S. Irawan, “Implementasi Convolutional Neural Network dengan Arsitektur MobileNetV2 Untuk Pengklasifikasi Kesegeran Daging,” J. Comput. Inf. Technol., vol. 8, no. 1, pp. 41–47, 2024.

[10] C. Chen, N. A. Mat Isa, and X. Liu, “A review of convolutional neural network based methods for medical image classification,” Comput. Biol. Med., vol. 185, p. 109507, Feb. 2025, doi: 10.1016/j.compbiomed.2024.109507.

[11] A. Aljabar, I. Ali, and B. M. Karomah, “Sentiment Analysis Using Transformer Method,” J. Informatics Inf. Syst. Softw. Eng. Appl., vol. 6, no. 2, pp. 90–97, Feb. 2024, doi: 10.20895/inista.v6i2.1383.

[12] J. Mohan, A. Sivasubramanian, S. V., and V. Ravi, “Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable AI,” Comput. Biol. Med., vol. 190, p. 110007, May 2025, doi: 10.1016/j.compbiomed.2025.110007.

[13] U. K. Lopes and J. F. Valiati, “Pre-trained convolutional neural networks as feature extractors for tuberculosis detection,” Comput. Biol. Med., vol. 89, pp. 135–143, Oct. 2017, doi: 10.1016/j.compbiomed.2017.08.001.

[14] K. Dong, C. Zhou, Y. Ruan, and Y. Li, “MobileNetV2 Model for Image Classification,” in 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Dec. 2020, pp. 476–480. doi: 10.1109/ITCA52113.2020.00106.

[15] T. Tuncer, P. D. Barua, I. Tuncer, S. Dogan, and U. R. Acharya, “A lightweight deep convolutional neural network model for skin cancer image classification,” Appl. Soft Comput., vol. 162, p. 111794, Sep. 2024, doi: 10.1016/j.asoc.2024.111794.

[16] M. Shahin, F. F. Chen, A. Hosseinzadeh, and M. Maghanaki, “Deploying deep convolutional neural network to the battle against cancer: Towards flexible healthcare systems,” Informatics Med. Unlocked, vol. 47, p. 101494, 2024, doi: 10.1016/j.imu.2024.101494.

[17] A. Ismail-Fawaz, M. Devanne, J. Weber, and G. Forestier, “Deep Learning For Time Series Classification Using New Hand-Crafted Convolution Filters,” in 2022 IEEE International Conference on Big Data (Big Data), Dec. 2022, pp. 972–981. doi: 10.1109/BigData55660.2022.10020496.

[18] K. Vayadande, A. A. Bhosle, R. G. Pawar, D. J. Joshi, P. A. Bailke, and O. Lohade, “Innovative approaches for skin disease identification in machine learning: A comprehensive study,” Oral Oncol. Reports, vol. 10, p. 100365, Jun. 2024, doi: 10.1016/j.oor.2024.100365.

[19] D. K. Saha, “An extensive investigation of convolutional neural network designs for the diagnosis of lumpy skin disease in dairy cows,” Heliyon, vol. 10, no. 14, p. e34242, Jul. 2024, doi: 10.1016/j.heliyon.2024.e34242.

[20] A. Tharwat, “Classification assessment methods,” Appl. Comput. Informatics, vol. 17, no. 1, pp. 168–192, Jan. 2021, doi: 10.1016/j.aci.2018.08.003.

[21] R. Rianto and D. Risdho Listianto, “Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat,” AITI, vol. 20, no. 2, pp. 167–176, Aug. 2023, doi: 10.24246/aiti.v20i2.167-176.

Downloads

Published

2025-06-01

Issue

Section

Research Article

How to Cite

[1]
N. Tarisafitri and A. Aljabar, “Classification of Skin Diseases using Digital Image Processing with MobileNetV2 Architecture”, Nusant. J. Artif. Intell. Inf. Syst., vol. 1, no. 1, pp. 35–44, Jun. 2025, doi: 10.47776/nuai.v1i1.1594.